
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Software Engineering for Embedded Systems

Extraction of Transformation Rules from UML diagrams

to SpecC

Tetsuro KATAYAMA†a), Member

SUMMARY Embedded systems are used in broad fields.
They are one of the indispensable and fundamental technolo-
gies in a highly informative society in recent years. As embedded
systems are large-scale and complicated, it is prosperous to de-
sign and develop a system LSI (Large Scale Integration). The
structure of the system LSI has been increasing complexity ev-
ery year. The degree of improvement of its design productivity
has not caught up with the degree of its complexity by conven-
tional methods or techniques. Hence, an idea for the design of
a system LSI which has the flow of describing specifications of a
system in UML (Unified Modeling Language) and then designing
the system in a system level language has already proposed. It
is important to establish how to convert from UML to a system
level language in specification description or design with the idea.

This paper proposes, extracts and verifies transformation
rules from UML to SpecC which is one of system level languages.
SpecC code has been generated actually from elements in dia-
grams in UML based on the rules. As an example to verify the
rules, “headlights control system of a car” is adopted. SpecC
code has been generated actually from elements in diagrams in
UML based on the rules. It has been confirmed that the example
is executed correctly in simulations. By using the transformation
rules proposed in this paper, specification and implementation of
a system can be connected seamlessly. Hence, it can improve
the design productivity of a system LSI and the productivity of
embedded systems.
key words: Transformation rules, UML (Unified Modeling Lan-
guage), SpecC, System level languages, VisualSpec, Embedded
systems, System LSI (Large Scale Integration)

1. Introduction

By development of microprocessor technology, appli-
cable fields of computers built into home electronics,
measurement apparatus, and so on, i.e., embedded sys-
tems are expanded. Moreover, as apparatus or devices
for control or management are more highly efficient and
complex, it is remarkable that embedded systems are
large-scaled and complicated. Furthermore, digitiza-
tion of apparatus is also increasing the importance of
embedded systems. The present embedded systems are
used in broad fields, such as a personal digital assistant,
an information appliance, and apparatus in car. They
are one of the indispensable and fundamental technolo-
gies in a highly informative society in recent years.

As embedded systems are large-scale and compli-

Manuscript received September 24, 2004.
Manuscript revised January 5, 2005.
Final manuscript received February 4, 2005.

†The author is with the Faculty of Engineering, Univer-
sity of Miyazaki, Miyazaki-shi, 889-2192 Japan.

a)E-mail: kat@cs.miyazaki-u.ac.jp

cated, it is prosperous to design and develop a system
LSI (Large Scale Integration) which realizes all func-
tions of a system with one chip. The structure of the
system LSI has been increasing its complexity every
year. The degree of improvement of its design produc-
tivity has not caught up with the degree of its com-
plexity by conventional methods or techniques[1]. The
following methods can be considered to solve the situ-
ation.

• Description of specifications in UML (Unified
Modeling Language)[2]

• Design by system level languages

These two methods can be used independently.
Hence, an idea for the design of a system LSI which
has the flow of describing specifications of a system in
UML and then designing the system in a system level
language has already proposed[3]. By establishing this
idea, it becomes possible to realize shortening a design
period and improving a design quality. Moreover, since
the object-oriented view of UML can be used, the sys-
tem LSI which is powerful against specification change
and is able to reuse of design data can be constructed.
It is important to establish how to convert from UML
to a system level language in specification description
or design with the idea.

This paper proposes, extracts and verifies trans-
formation rules from UML to a system level language.
In this paper, SpecC[4] which is advanced spread or
promotion activities mainly in Japan is adopted as a
system level language. VisualSpec[5] of InterDesign
Technologies, Inc. is used as a design tool or editor
for SpecC. Here, the transformation rules proposed in
this paper express the rule for conversion from elements
in some diagrams in UML to the elements needed when
codes in SpecC are described.

Section 2 explains briefly object-oriented model-
ing language UML, system level language SpecC, and
design tool VisualSpec which this paper uses. Section
3 shows the transformation rules extracted in this pa-
per. Section 4 verifies the rules expressed in Section
3. SpecC code is generated actually from elements in
diagrams in UML based on the rules and the generated
code is verified in simulations. As an example, “head-
lights control system of a car”[6] is adopted. Section 5
describes discussion and evaluation.

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

2. Preparation of Research

2.1 UML

UML (Unified Modeling Language) is a visual lan-
guage[2]. It helps to understand the structure and the
dynamic behavior or action for the business or the vari-
ous systems. Introducing UML can reduce a backtrack-
ing such as missing recognition of the specifications.
This is why communication gap between a user and a
developer, or developers can dissolve and user require-
ments can become accurate. Moreover, object-oriented
design by UML promotes modularization effectively. It
is possible that a maintenance cost is reduced.

UML has been proposed by Grady Booch, James
Rumbaugh, and Ivar Jacobson, who the methodology
of an object-oriented analysis and design was devised
in the separate organization, to OMG (Object Man-
agement Group)[7] as a unification methodology, and
agreed officially with UML1.0 in 1997. After that, the
standard of UML is expanded, it is UML1.5 in Mar.,
2003, and it is said that UML2.0 is released soon. This
paper uses the specification of UML1.5 as the official
“Available UML Specification” at present.

The following nine kinds of diagrams exist in UML,
and each is handled respectively corresponding to the
use.

• class diagram
• object diagram
• usecase diagram
• statechart diagram
• sequence diagram
• activity diagram
• collaboration diagram
• component diagram
• deployment diagram

UML can show various aspects of the system by
using nine diagrams.

2.2 SpecC

SpecC[4] is one of system level languages. Features
of the system level languages are feasibility, modular-
ity, and completeness. The modularity means that
function and connection can be divided completely.
The completeness means that all of structural hierar-
chy, behavior, parallelism, synchronization, exception-
handling timing, and state transition which are com-
mon concepts in any embedded systems can be treated.
Unlike the existing programming languages, a system
level language has the feature which can realize oper-
ation of hardware or software with real-time restric-
tions. On the other hand, it is also possible to use as
a hardware description language or mere programming
language.

The system level languages have four advantages
as follows:

• It is possible to solve the trouble resulting from
specification being described by natural languages.

• It is executable. (A simulation is possible)
• It is possible to use hardware software co-design or

co-verification.
• It is possible to unify one description language

from specification to implementation.

Some system level languages which have the
above advantages are proposed such as “SystemC”[8],
“SpecC”[4], “Cynlib”[9], and so on.

However, since all are the steps where a proposal
and spread or promotion activities still started just, the
following points are mentioned as faults.

• At present, it cannot judge which language be-
comes a de facto standard.

• At present, each language is not clear about the
ability of its description.

In this paper, “SpecC”[4] is adopted as a system
level language. It is one of the system level languages
for describing or designing systems was born by the
research and development over many years at the Uni-
versity of California, Irvine. It is advanced spread or
promotion activities mainly in Japan at present. SpecC
adds concepts, such as parallelism, synchronization and
communication, and timing, and the syntax to imple-
ment the concepts to ANSI C.

Main elements (features) of SpecC are described as
follows. A functional block is important in considering
the specification of a system. The overall function of
a system can be checked by clarifying the interface be-
tween functional blocks. The interface is declared as an
event. That is, a functional block is operated through
the event in using the functional block from the exte-
rior. A behavior can express the interior of a functional
block in more detail. It causes state transition by three
kinds of transition types: FSM (Finite State Machine)
event, condition, and completion. A channel can be
used for communication between two or more behav-
iors. It can hide a detailed communications protocol
in itself. Moreover, since it can separate behavior and
communication completely, the maintenance to specifi-
cation change becomes easy.

2.3 VisualSpec

It becomes possible to shorten remarkably the period
from specification to design by describing specifications
of a system in UML and then designing the system in
a system level language. Here, it is an important part
that the conversion from UML to a system level lan-
guage. Hence, this paper extracts the transformation
rules from elements in some diagrams in UML to ele-
ments in system level language SpecC.

KATAYAMA: EXTRACTION OF TRANSFORMATION RULES FROM UML DIAGRAMS TO SPECC
3

conversion

UML

C/C++ Verilog/VHDL

design for
software or firmware

design for
hardware

(editor)

SpecC

target in this paper

VisualSpec

Fig. 1 Outline of the flow from specification to design in this
paper

This paper uses VisualSpec[5] of InterDesign Tech-
nologies, Inc. as a design tool or editor for SpecC to
realize the conversion. VisualSpec offers the design en-
vironment which consists in “specification editor” to
input and edit a SpecC program and “specification de-
bugger” to compile, execute, and debug the program.
It can design a system simply by visual input and edit.

Figure 1 shows an outline of the flow from specifi-
cation to design in this paper.

3. Transformation Rules from UML to SpecC

First, in a system design with SpecC, the system can
know the demand from a user through an input port,
and output the result through an output port. What
can express external specification best in UML is a use-
case diagram. Actors in a usecase diagram show roles
of user in system and usecases show functions in sys-
tem. Hence, there is some possibility of defining in-
put/output ports by referring to actors in a usecase di-
agram. By being conscious of such a mapping in writ-
ing usecase diagrams, actors can be corresponded to
input/output ports. In the usecase diagrams described
under the idea as above, events can be declared by refer-
ring to usecases in the usecase diagrams because it can
be considered that usecases are demand elements from
a user or are an only communication means opened to
the public to the exterior and a functional block is op-
erated through an event when the functional block is
used from the exterior in a system.

Figure 2 shows an example of conversion from use-
case diagram to input/output ports and events. An
input port from actor A1, output ports from actor A2,
A3, and events from usecase B1, B2 can be defined,
respectively.

Next, in order to be able to overlook the function

A1

A2
B1

B2

System

A3

B1

B2

event

A3

A2
A1

output portinput port

usecase diagram

input/output ports & events

Fig. 2 Conversion from usecase diagram to input/output ports
and events

A

A１

A２

A３

A３１

A３２

A

A１

A２ A３

A３１

A３２

A３

statechart diagram behaviors

Fig. 3 Conversion from statechart diagram to behaviors and
their hierarchy

of the whole over a system, it is necessary to extract
functional blocks and to clear interfaces between each of
blocks. Interfaces can be declared ones called an event
from usecase diagram as above. Functional blocks can
be defined through class diagram, which can describe
the static structure of a system by connecting two or
more classes with relation, or be extracted by referring
to lanes in activity diagram, which express a sequence
of the processing assigned to a specific object or sub-
system. Moreover, the relation of the functional blocks
can be defined by referring to the relation among classes
in class diagram, or the relation among lanes or action
states in activity diagram.

And then, behaviors, which express the details of
functional blocks, can be defined by referring to use-
cases in usecase diagram or operations, which present
the processing in a class, in class diagram. Behaviors
can also be defined by referring to statechart or activity
diagram, which can express the dynamic side of a sys-

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Table 1 Transformation rules from UML to SpecC

generated elements reference diagrams & elements

input/output port usecase diagram actor
event usecase diagram usecase
relation of an input/output
port and an event

usecase diagram relation of an actor and a usecase

functional block class diagram class
activity diagram lane

relation among functional blocks class diagram relation among classes
activity diagram relation among action states or among lanes

behavior usecase diagram usecase
class diagram operation
statechart diagram state
activity diagram action state

hierarchy of behaviors statechart diagram relation of statechart diagrams (if multiple statechart
diagrams exist)

parallel execution statechart diagram state transition
transition or flow of behaviors activity diagram transition of action states

statechart diagram state transition
condition for transition statechart diagram event or action

activity diagram conditional judgment
variables class diagram attribute
channel class diagram stereotype, operation, or relation of classes (if they

communicate through dependency, events, and so on)
synchronization class diagram operation or relation of classes (if they communicate

through events)
activity diagram action states before or after a synchronous bar (if

activity diagram expresses the synchronizations)

tem. Moreover, if statechart diagram exists to states of
another statechart diagram, referring to the relation of
those statechart diagrams can define the hierarchy of
behavior. A behavior transits to another behavior un-
der some conditions. Since this is almost the same as
the role of statechart diagrams, referring to state tran-
sition in the statechart diagram can define transition of
the behavior. In that case, referring to events or condi-
tions in the statechart diagram can define FSM event,
condition, or completion which are the transition types
of the state of behavior.

Figure 3 shows an example of conversion from stat-
echart diagram to behaviors and their hierarchy. One
statechart diagram expresses state transitions of an ob-
ject A and the other expresses state transitions of a
state A3 which is corresponded to one state in the ob-
ject A. A hierarchy of behaviors which consists of a
parent behavior A, its children behaviors A1, A2, A3,
and A3’s children behaviors A31, A32 can be defined
from these two statechart diagrams.

Finally, variables can be defined by referring to
types and arguments described as attributes in class
diagram. Cannels can be defined by referring to the
class name, stereotype, or operations in classes if they
communicate each other by the relation of the classes
such as dependency, events, and so on in class diagram.
Synchronizations between behaviors which execute con-
currently can be defined by referring to class diagram
as similarly. Or action states before and after a syn-
chronous bar can define synchronizations if activity di-
agram expresses the synchronizations.

The above can be made into the transformation
rules from UML to SpecC in this paper. Table 1 shows
the summarized transformation rules. In order to cre-
ate the element in SpecC on the left-hand side of the
table, it means referring to the elements in diagrams of
UML on the right-hand side.

4. Verification of the Transformation Rules

In order to confirm the validity of the transformation
rules extracted in Section 3, SpecC code is generated
actually from elements in diagrams in UML based on
the rules and the generated code is verified in simula-
tions. As an example, “headlights control system of a
car”[6] is adopted.

4.1 Application of the Transformation Rules

First, the elements to generate SpecC code in Visual-
Spec is extracted from usecase, class, statechart, and
activity diagrams in UML, respectively, based on the
transformation rules. And then, the SpecC code is gen-
erated by inputting the elements in VisualSpec.

Figure 4 shows a usecase diagram in the headlights
control system of a car. Input/output ports from the
actors in the diagram can be defined. And their values
and contents from the usecases can be defined. Table
2, 3 show the input and output ports, respectively.

Moreover, from the usecases, events can be de-
clared. Figure 5 shows them in VisualSpec.

Figure 6, 7, and 8 are a class diagram, a statechart

KATAYAMA: EXTRACTION OF TRANSFORMATION RULES FROM UML DIAGRAMS TO SPECC
5

Table 2 Lists of input ports

Signal Port Value

headlights switch Pi0 0: headlights OFF
1: parking lamps only ON
2: headlights & parking lamps ON

main switch Pi2 0: ON
1: OFF

fog lamps switch Pi3 0: ON
1: OFF

high / low beam
change

Pi4 0: high beam ON
1: low beam ON

opening / clos-
ing doors

Pi5 0: OPEN
1: CLOSE

Table 3 Lists of output ports

Signal Port Value

high beam Po0 0: high beam ON
1: high beam OFF

low beam Po1 0: low beam ON
1: low beam OFF

fog lamps Po2 0: fog lamps ON
1: fog lamps OFF

parking lamps Po3 0: parking lamps ON
1: parking lamps OFF

lights OFF

headlights ON

parking lamps ON

main ON

main OFF

fog lamps ON

high beams ON

low beams ON

doors OPEN

doors CLOSE

fog lamps OFF

Headlights control system

headlights switch

main switch

fog lamps switch

high / low beam
change switch

opening / closing
doors switch

high beam

low beam

fog lamps

parking lamps

Fig. 4 Usecase diagram of the headlights control system of a
car

diagram, and activity diagram of the headlights con-
trol system of a car, respectively. From the class and
activity diagrams, functional blocks can be defined be-
cause the overall structure and flow of the system can
be understood from the diagrams. From the statechart
diagram, behaviors of the headlights control and hier-
archy of the behaviors can be defined. Figure 9 shows
the registration of behaviors in VisualSpec based on the
above.

Furthermore, the state transitions of the behaviors
of a headlights component, headlights ON, a low beam,
and automatic headlights OFF can be defined from the
statechart diagram. Figure 10 shows the definition of

Fig. 5 Declaration of events (from VisualSpec)

switch

port number

headlights
control

input
surveillance

check messages

send events

output access
function

HeadLightHi（）

HeadLightLow（）

ParkLamp（）

FogLamp（）

lights

port number

parking lamps ON

headlights ON

headlights OFF

auto headlights OFF

Fig. 6 Class diagram of the headlights control system of a car

headlights OFF

headlights ON parking lamps ON

auto headlights OFF

headlights
OFF headlights

ON

headlights
OFFparking

lamps ON

parking
lamps ON

headlights
OFF

headlights
ON

main
switch

ON

main
switch
OFF

parking
lamps ON

timeout

1. highest behavior

auto headlights OFF

waiting for opening doors

delay headlights OFF

door open

headlights ON

high beam

fog lamps ON

high / low
beam change

low beam

fog lamps OFF

2. headlights ON behavior

3. auto headlights OFF behavior

fog lamps
switch ON

fog lamps
switch OFF

Fig. 7 Statechart diagram of the headlights control system of
a car

the state transition of the headlights component. The
other state transitions can be defined, similarly.

4.2 Generation of the SpecC code and simulation ex-
ecution

The specification has been created for the headlights
control system of a car based on the transformation
rules in VisualSpec. Here, the codes for the input

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

switching

input
surveillance

lights
ON or OFF

state before
switching

(waiting for events)

state after switching

switch Headlights control system lights

Fig. 8 Activity diagram of headlights control of a car

Fig. 9 Registration of behaviors (from VisualSpec)

Fig. 10 Definition of the state transition of the headlights com-
ponent (from VisualSpec)

surveillance, its behavior, and output access which are
needed to verify the rules is described independently.
The code (735 lines) in SpecC has been automatically
generated by VisualSpec. Figure 11 shows a part of the
codes.

It is checked that “headlights control system of a

//
// HeadLightCtrl.sc
// Created by VisualSpec 2002 Version1.02
//
#include <sim.h>
#include <vscom.h>
#include <stdio.h>
#include <sim.h>
#include <vscom.h>
#include <string.h>
#define ON 1
#define OFF 0
void OUT_SetHeadLampHi (char bOn)
{

switch (bOn) {
case OFF:
// Po0=0 ;
// Po1=0 ;
VS_SendMessage ("Po0" , "0") ;
VS_SendMessage ("Po1" , "0") ;

break;
case ON :
// Po0=1 ;
// Po1=1 ;
VS_SendMessage ("Po0" , "1") ;
VS_SendMessage ("Po1" , "1") ;

break ;
}

}

behavior _BEH_6__HeadLightOn_MAIN(void)
{
note BehaviorName =

"Headlights_HeadLightOn_MAIN";
_BEH_4_ HeadLightOn();
VSPEC_FSM_TRAP_WAIT_FSM_TRAP_WAIT();
void main(void) {

fsm {
HeadLightOn: {
}
_FSM_TRAP_WAIT : {
}

}
}
};

Fig. 11 A part of the SpecC code generated by VisualSpec

car” is executed correctly from the execution result of
simulations based on the generated code in SpecC. Fig-
ure 12 shows a snapshot in the simulations. As men-
tioned above, the validity of the transformation rules

KATAYAMA: EXTRACTION OF TRANSFORMATION RULES FROM UML DIAGRAMS TO SPECC
7

Fig. 12 A snapshot in the simulations

extracted in this paper has been confirmed.

5. Discussion

This paper extracts the transformation rules to SpecC
from diagrams in UML to shorten design period and im-
prove a design quality of a system LSI. SpecC code has
been generated actually from elements in the example
diagrams in UML based on the transformation rules.
The generated code has been verified in simulations.
The validity of the transformation rules extracted in
this paper has been confirmed.

In case the requirements specification of a system
is determined, it is becoming a de facto standard to
describe the specification in UML. Flows from UML
to software are being established. Actually, popular
UML modeling tools exists (e.g. [10], [11]) and many
methods or techniques about MDA(Model Driven Ar-
chitecture) have been proposed (e.g. [12], [13]). On the
other hand, fewer studies on flows from UML to hard-
ware have been documented. An idea for the design of
a system LSI which has the flow of describing specifica-
tions of a system in UML and then designing the system
in a system level language has already proposed[3]. In
order to apply UML to embedded systems, some re-
serches have expanded UML (e.g [14]–[18]). They in-
troduce their specific metamodels, scripting languages,
or extended profile over a concept of UML. The trans-
formation rules extracted in this paper from only the
specification of UML. Anyone who learns only UML are
available and understandable for the rules easily.

By using the transformation rules, specification
and implementation of a system can be connected seam-
lessly. Hence, it can improve the design productivity of
a system LSI and the productivity of embedded sys-
tems, which are large-scale and complicated, increases.

The transformation rules extracted in this paper
have been verified by applying the example. However,
elements in SpecC which cannot be extracted as trans-
formation rules such as pipeline execution, exception
handling, timing, and so on exist at present. More rules
must be extracted to improve productivity of embed-
ded systems more. It is considered to use the other

diagrams which are not used in this paper.
Although the transformation rules have been ex-

tracted and elements in SpecC have been inputted into
VisualSpec in this paper, this work has been done man-
ually. The tool automatically conversed into inputs of
VisualSpec from diagrams in UML based on the trans-
formation rules must be implemented.

This paper uses the specification of UML1.5 as the
official “Available UML Specification” at present. It is
said that the specification of UML2.0 is fixed soon[2].
Hence, it is expected that the transformation rules are
corresponded to UML2.0 as soon as it is released for-
mally.

6. Conclusion

In this paper, the transformation rules to SpecC from
diagrams in UML are extracted to shorten design pe-
riod and improve a design quality of a system LSI. The
transformation rules proposed in this paper express the
rules for conversion from elements in some diagrams
in UML to the elements needed in describing codes in
SpecC. SpecC which is advanced spread or promotion
activities mainly in Japan is one of system level lan-
guages. VisualSpec of InterDesign Technologies, Inc.
is used as a design tool or editor for SpecC. As an ex-
ample to verify the rules, “headlights control system
of a car” is adopted. SpecC code has been generated
actually from elements in diagrams in UML based on
the rules. The example has been executed correctly in
simulations. As mentioned above, the validity of the
transformation rules extracted in this paper has been
confirmed.

By using the transformation rules proposed in this
paper, specification and implementation of a system
can be connected seamlessly. Hence, it can improve the
design productivity of a system LSI and the productiv-
ity of embedded systems, which are becoming larger-
scale and more complicated.

Future issues are as follows:

• More extraction of transformation rules
In this paper, the transformation rules have been

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

extracted from four diagrams in UML: usecase,
class, statechart, and activity diagrams. The
transformation rules extracted in this paper have
been verified by applying to the example. How-
ever, elements in SpecC which cannot be extracted
as transformation rules such as pipeline execution,
exception handling, timing, and so on exist at
present. By extracting more rules through con-
sidering other diagrams also, productivity of em-
bedded systems is improved more.

• Implementation of an automatic conversion tool
Although the transformation rules have been ex-
tracted and elements in SpecC have been inputted
into VisualSpec in this paper, this work has been
done manually. By implementing a tool automati-
cally conversed into inputs of VisualSpec from dia-
grams in UML based on the transformation rules,
it aims at conversion for a shorter time.

Acknowledgments

I would like to thank Yoshifumi Koyashiki for imple-
menting some codes to execute simulations, and thank
Shin’ya Sasaki for making some figures from Visual-
Spec.

References

[1] Daniel D. Gajiski, Jianwen Zhu, Rainer Domer, Andreas
Gerstlauer, and Shuqing Zhao: “SpecC: Specification Lan-
guage and Methodology,” Kluwer Academic (2000).

[2] Unified Modeling Language: http://www.uml.org/
[3] Koji Asari: “The modeling technique for the system using

UML,” Proc. 4th Summer Workshop on Embedded System
Technologies (SWEST4), pp.3-4 (2002) (in Japanese).

[4] SpecC Technology Open Consortium:
http://www.specc.gr.jp/eng/

[5] InterDesign Technologies, Inc. : “VisualSpec”
http://www.interdesigntech.co.jp/english/visualspec.htm

[6] “Co-design embedded software and LSI in C language –
Aim system architect –,” Design Wave Magazine, CQ Pub-
lishing, No.32, pp.27-111 (2000) (in Japanese).

[7] Object Management Group: http://www.omg.org/
[8] Open SystemC Initiative: http://www.systemc.org/
[9] Forte Design Systems: http://www.forteds.com/

[10] IBM Co. : “Rose,” http://www-136.ibm.com/
developerworks/rational/products/rose/

[11] Embarcadero Technologies, Inc.: “Describe,”
http://www.embarcadero.com/products/describe/

[12] David S. Frankel: “Model Driven Architecture: Applying
Mda to Enterprise Computing,” John Wiley & Sons Inc.
(2003).

[13] Jeff Gray, Jing Zhang, Yuehua Lin, Hui Wu, Suman Roy-
choudhury, Rajesh Sudarsan, Aniruddha Gokhale, Sandeep
Neema, Feng Shi, and Ted Bapty: “Model-Driven Program
Transformation of a Large Avionics Framework,” Proc.
3rd Generative Programming and Component Engineer-
ing (GPCE 2004), Springer-Verlag LNCS 3286, pp.361-378
(2004).

[14] Bran Selic: “Using UML for Modeling Complex Real-Time
Systems,” Proc. ACM SIGPLAN Works. on Languages,
Compilers, and Tools for Embedded Systems (LCTES’98),

Springer-Verlag LNCS 1474, pp.250-260 (1998).
[15] Jorge L Diaz-Herrera, Jasmin Chadha, and Neil Pittsley:

“Aspect-Oriented UML Modeling for Developing Embed-
ded Systems Product Lines,” Works. on Aspect-Oriented
Modeling with UML Int’l Conf. on Aspect-Oriented Soft-
ware (2002).

[16] Pierre Boulet, Jean-Luc Dekeyser, Cédric Dumoulin, and
Philippe Marquet: “MDA for SoC Design, Intensive Signal
Processing Experiment,” Forum on specification & Design
Languages (FDL’03),
http://www.lifl.fr/west/publi/DBDM03f.pdf (2003).

[17] Qiang Zhu, Ryosuke Oishi, Takashi Hasegawa, and Tsu-
neo Nakata: “System-on-Chip Validation Using UML and
CWL,” Proc. 2nd IEEE/ACM/IFIP Int’l Conf. on Hard-
ware/Software Codesign and System Synthesis, pp.92-97
(2004).

[18] CATS Co. Ltd.: “Xmodelink,”
http://www.zipc.com/english/product/xmodelink/

Tetsuro Katayama received the
Ph.D degree in engineering from Kyushu
University, Fukuoka, Japan in 1996. From
1996 to 2000 he has been a Research As-
sociate at the Graduate School of Infor-
mation Science, Nara Institute of Science
and Technology, Japan. Since 2000 he has
been an Associate Professor at the De-
partment of Computer Science and Sys-
tems Engineering, Faculty of Engineering,
University of Miyazaki, Japan. His re-

search interests include software testing, system softwares, and
embedded systems. He is a member of the IPSJ and JSSST.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF00410050005300450043003000357528306b4f5c6210>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

