Generating a Device Driver with a Formal Specification Language

Tetsuro Katayama, Keizo Saisho, and Akira Fukuda

Graduate School of Information Science,
Nara Institute of Science and Technology
8916-5 Takayama Ikoma, Nara 630-0101, JAPAN.
{kat,sai,fukuda}@Qis.aist-nara.ac.jp

Abstract

This research investigates the possibility of auto-
matic generating OS(Operating System). Writing de-
vice drivers is one of difficult tasks to develop or port
OS. In this paper, the burden in writing device drivers
is lighten and their productivity is improved by using
a formal specification language. An automatic device
driver generation system is proposed, and its inputs are
discussed. The inputs for the system are determined
by both of a specification and a data sheet of the de-
vice. A specification of the device shows fundamental
functions of the device, and a data sheet of the device
shows peculiar values of the device. Parameters of both
inputs are extracted from existing device drivers. A
formal specification language VDM-SL(the Vienna De-
velopment Method Specification Language) is adopted
in order to describe specification of devices. As an ex-
ample, a specification for a printer device is written in
VDM-SL. Formal specification languages can remove
obscurity from a specification of software in compari-
son with other programming languages, and then bugs
can be reduced in the specification as many as possi-
ble. By describing a specification for devices clearly,
device drivers can be generated more easily. Conse-
quently, time and labor in generating the device drivers
decrease.

Keywords: Operating systems, Device drivers, Formal
specification languages, VDM-SL.

1 Introduction

OS(Operating System) cannot be adapted to various
hardware or application programs, which are being de-
veloped. One of the reasons is that much time and
efforts in writing device drivers are spent. As internet
is grown or multi-media is progressed, various devices
would be developed. It is a more serious problem to
spend much time and make efforts. We should urgently
cope with reducing the burden.

Writing device drivers is one of difficult tasks to de-
velop or port OS. Some of the reasons are as follows:

e Programmers of device drivers must know infor-
mation about hardware such as specifications of

devices and carefully describe complex parts such
as timing control.

e When two devices have different chips (controllers)
even if they offer the same services, the program-
mers must write two different device drivers for
each of them.

¢ If we change an OS but use the same devices, we
need to rewrite the device drivers for a new OS.

Most of researches into OS concentrate on its de-
sign and/or improvement of its performance such as
scheduling policy, memory management and file sys-
tem construction. It is difficult to generate, modify,
port, test and debug OS because its program is larger
and more complex than application programs. Few
studies on generating device drivers or operating sys-
tems themselves have been reported[1]-[4]. It is nec-
essary to improve productivity of OS. Our study has
investigated the possibility of automatically generating
OSJ[5].

In this paper, we propose an automatic device driver
generation system, and its inputs are discussed. In
section 2, we describe an automatic device driver gen-
eration system. As an example, a specification for a
printer device is written in VDM-SL(the Vienna De-
velopment Method Specification Language), which is
one of formal specification languages. Formal specifi-
cation languages can remove obscurity from a specifi-
cation of software in comparison with other program-
ming languages, and then bugs can be reduced in the
specification as many as possible. By using a formal
specification language, we aim at lightening the burden
in writing device drivers and improving their produc-
tivity. In section 3, we discuss and evaluate the system.
In section 4, we present our conclusion.

2 Device Driver Generation Sys-
tem

In this section, we propose an automatic device driver
generation system.

Specification Data sheet
of a device of a device
each =7 each device

devices

Device Driver
Generation System

Library in
0s

each OS

.

Source code of
a device driver

~—_

Figure 1: Outline of the device driver generation sys-
tem.

2.1 Outline of the System

In developing the device driver generation system, we
should abstract device driver generation itself. We con-
sider that inputs for the system are various elements
such as functions, values, timing control, and so on. We
attempt to simplify inputs for the system. We divide
a specification and a data sheet from a device driver
whether or not it depends on a chip. The inputs for
the system are determined as follows:

e A specification of a device — It shows fundamen-
tal functions of the device. It is associated with
a kind of devices such as floppy disk, CD-ROM,

and so on.

e A data sheet of a device — It shows peculiar
values of the device such as I/O ports, control
sequences, and so on. It must be prepared for
each device.

Thus, when we change a device to a new one which
offers the same services, we can use the same specifica-
tion to give only the data sheet depending on the chip
of the new one.

Figure 1 shows an outline of the system. The system
generates a source code of a device driver by giving
both of a specification and a data sheet of the device
which we would like to generate. The system would
have libraries depended on the target OS as data in
the system. The libraries give how to use functions in
the target OS because the way of calling device drivers
differs in each OS.

As an example of the target device in this paper, we
choose a printer device. It is simpler and its specifi-
cation which we need to write is smaller than other
devices. We examine existing printer device drivers in
MINIX[6], FreeBSD[7] and NetBSDI8] and investigate
the abstraction of the drivers to extract peculiar val-
ues and fundamental functions of the driver from them.
Table 1 shows the functions for printer devices.

Table 1: Functions for printer devices

’ Name | Action ’
init initializing devices
open making devices possible
close making devices impossible

write | writing values on devices
cancel | canceling the writing operation
error handling errors

As similar, Table 2 shows peculiar values which we
extract for printer devices.

2.2 Specification in VDM-SL

We adopt a formal specification language in order to
describe the specification of the device which is wanted
to generate. It can remove obscurity from the specifica-
tion in comparison with other programming languages,
and then bugs can be reduced in the specification as
many as possible.

We choose VDM-SL (the Vienna Development Method
Specification Language)[9] as the language to describe
a specification of devices. A specification written in
VDM-SL can be translated into a source code written
in programming language C+4++. It can prevent bugs
from getting into the code and we can easily execute
it.

Considering Table 1 and Table 2, we write a sample
specification of a printer device written in VDM-SL as
Figure 2 and 3. In Figure 2, states are expressed by us-
ing global variables and the state transit is presented
by using operations. Hence, any operations can use
global variables by assignment of values such as port,
status and command to them. Because interrupts and
timing control cannot be described in VDM-SL, we
cannot generate such parts automatically. In this pa-
per, we generate a rough process in a device driver
for the target device. In Figure 2, a hexadecimal is
expressed by using the prefix “0x” to be easily under-
standable because VDM-SL cannot treat with a hex-
adecimal type. Also, the specification given by Figure
3 includes ambiguous parts in post conditions as sen-
tence structure of VDM-SL, but we do not describe in
detail.

Figure 4 shows a part (Init part) of a source code
written in C4++, which is translated the sample speci-

Table 2: peculiar values of printer devices

‘ Name |

Part

data register port

the port to give print data

status register port

the port where status of a printer are read or written

control register port

the port to give control codes

control code

a command to control the printer

status code

a value which denote status of the printer

interruption request (IRQ) | the number of interrupts

values
Data_Port = 0x3BC;
Status_Port = 0x3BD;
Control_Port = Ox3BE;
assert_strobe_Command = 0x1D;
negate_strobe_Command = 0x1C;
select_Command = 0x0C;
init_printer_Command = 0x08;
busy_Status = 0x10;
nopaper_Status = 0x20;
normal_Status = 0x90;
online_Status = 0x10;

printer_IRQ = 7

Figure 2: Sample values of a printer device written in

VDM-SL

fication in VDM-SL. The approximate execution time
in the translation measures 0.031 sec. on SUN Ultra
1.

3 Discussion

In this section, we discuss the specification language,
which we adopt as a language to describe inputs for
the system, the efficiency of the system, the standard
interface I;O(Intelligent Input Output), and devices
written and designed with HDL(Hardware Description
Language).

3.1 Description by Formal Specification
Languages

A formal specification language VDM-SL is adopted
as a language to describe inputs for the device driver
generation system. It can remove obscurity from the
specification in comparison with other programming
languages, and then bugs can be reduced in the speci-
fication as many as possible.

Generally, formal specification languages has less pow-
erful to describe than programming languages. It is
convenient that VDM-SL can treat with various data
types easily. It, however, executes a process by call-
ing functions or procedures. The order in process ex-

ecution must be described in the order of the called
functions or procedures.

LOTOS (Language Of Temporal Ordering Specifi-
cation) [10] is popular one of formal specification lan-
guages. Figure 5 and 6 shows sample values and spec-
ification of printer device written in LOTOS. Because
in LOTOS, abstract data types can be only defined,
constants must be generated by operations and it is
complicated (as Figure 5). Also, it is difficult to make
variables corresponded to state variables in program-
ming languages because passes by values are explained
through interaction among processes.

In this paper, we adopt VDM-SL as a formal speci-
fication language. If there was the language which get
both functions of declaration of constants such as port
number and description of the order of a process, it
might be more easy to describe a specification of de-
vices.

3.2 Efficiency of the System

By describing the specification clearly, the printer de-
vice driver can be generated more easily. Moreover, the
specification of devices is not needed to rewrite when
we adapt a new device of which functions are equal to
those of the old one. Consequently, the burden which
we need in writing device drivers can decrease, and
their productivity is improved.
We cannot, however, generate a complete device driver

automatically. At the end of generation,

(A) we need to write manually the interrupts and
timing control, which cannot are described in the
specification in VDM-SL, in the generated source
code, and

(B) we need to check both of the number and names
of arguments in each function or procedure.

About (A), we consider how both parts of interrupts
and timing control are generated. In order to auto-
matically generate interrupts, we plan to use and ap-
ply the libraries in the system. As to timing control,
it is realized by various ways in existing devices. If
timing control of a device is realized by hardware, we
need not write specifically it on a device driver of the

operations
Print_drv() ==

Init();
while true do
|| (Open(),Close(),Write(),
Cancel(),Error())

s
Init() ==
(

out_byte(Control_Port,
init_printer_Command) ;
out_byte(Control_Port,
select_Command) ;
put_irq_handler(printer_IRQ,
Print_handler)
)

ext rw status
pre status = online_Status;

Open() ==
ext rw status
post status = online_Status;

Close() ==
ext rw status
post status = not online_Status;

Write() ==
(

if (data_count = 0) then
out_byte(Control_Port,
select_Command)

out_byte(Data_Port, data);
out_byte(Control_Port,
assert_strobe_Command) ;
out_byte(Control_Port,
; negate_strobe_Command);

ext rw status;
ro data_count

pre data_count >= 0 and
status = normal_Status;

Cancel() ==
ext rw data_count
post data_count = 0;

Error() ==
case status :

busy_Status -> retry(),

not online_Status and nopaper_Status
-> paper_empty(),

not online_Status
-> out_byte(Control_Port,

select_Command)

Figure 3: A sample specification of a printer device

written in VDM-SL

device. Thus, we can use the system without modifica-
tion. By contrast, if timing control should be realized
by software, we write it on a data sheet, which is one
of the inputs of the system. We plan to generate au-
tomatically a device driver by using timing control on
the data sheet as it is. According to circumstances,
we may develop a more adaptable language for writing
device drivers.

About (B), we had to make adjustments of the num-
ber or names of arguments in each function or proce-

void vdm_DefaultMod_Init() {
PushFile("printer.vdm");

PushPosInfo(34, 3);
{

PushPosInfo(35, 13);

Int tmpVar_14;

tmpVar_14 =
vdm_DefaultMod_Control__Port;

Int tmpVar_15;

tmpVar_15 =
vdm_DefaultMod_init__printer__Command;

vdm_DefaultMod_out__byte
(tmpVar_14, tmpVar_15);

PopPosInfo();

PushPosInfo(37, 13);

Int tmpVar_16;

tmpVar_16 =
vdm_DefaultMod_Control__Port;

Int tmpVar_17;

tmpVar_17 =
vdm_DefaultMod_select__Command;

vdm_DefaultMod_out__byte
(tmpVar_16, tmpVar_17);

PopPosInfo();

PushPosInfo(39, 20);

Int tmpVar_18;

tmpVar_18 =
vdm_DefaultMod_IRQ;

Int tmpVar_19;

tmpVar_19 =
vdm_DefaultMod_print__handler;

vdm_DefaultMod_put__irq__handler
(tmpVar_18, tmpVar_19);

PopPosInfo();

}
PopPosInfo();

}
PopFile();

Bool vdm_DefaultMod_pre__Init() {
PushFile("printer.vdm");
PopFile();
return (Bool)

(vdm_DefaultMod_status ==
vdm_DefaultMod_online__Status);

Figure 4: An ‘Init part’ of a translated source code in
C++ from the specification in VDM-SL

dure. We consider that we can prevent from adjusting
by writing a specification more minutely, which is one
of the inputs of the system.

3.3 Standard Interface 1,0

1,0 (Intelligent Input Output) SIG[11] has determined
standard interface IO between OS and devices[12].
Under the specification of 10, a device driver is di-
vided into three sections as follows: OSM (OS Specific
Module), HDM (Hardware Device Module) and Mes-
senger. OSM and HDM are depended on OS and hard-
wares (devices), respectively. Messenger communicates
between them. I;O specifies a form of packets used at

specification print_drv
[init,select,put_handler,
data,strobe,nstrobel]

retry,paper_empty] : noexit
type Ports is
sort hex
opns Data_Port : => hex
Status_Port : -> hex
Control_Port : -> hex
eqns ofsort hex
Data_Port = 0x3BC;
Status_Port = 0x3BD;
Control_Port = 0x3BE;
endtype
type Command is
sort hex
opns assert_strobe_Command : -> hex
negate_strobe_Command : -> hex
select_Command : —=> hex
init_printer_Command : -> hex

eqns ofsort hex

assert_strobe_Control = 0x1D;
negate_strobe_Control = 0x1C;
select_Control = 0x0C;
init_printer_Control = 0x08;
endtype
type Status_register is
sort hex
opns busy_Status : => hex
nopaper_Status : -> hex
normal_Status : -> hex
online_Status : -> hex
mask_Status : => hex
eqns ofsort status
busy_Status = 0x10;
nopaper_Status = 0x20;
normal_Status = 0x90;
online_Status = 0x10;
endtype
type Interrupt_Request is
sort int
opns irq : -> int
eqns ofsort int
irq = 7;
endtype

Figure 5: Sample values of a printer device written in

LOTOS

communication between OSM and HDM. OS can com-
municate the device without rewriting its HDM even
if OS changes.

If we adopt it to the proposed device driver genera-
tion system, we need not to prepare the system every
target OS for which we develop the system. It becomes
easily to develop the system itself. It, however, gener-
ates overheads by dividing a device driver into classes
and includes lower performance than usual. The over-
heads becomes critical, in particular, in devices moved
at high speed. Hence, we must consider whether or not
we use it in our proposed system.

3.4 Devices Designed with HDL

In order to generate device drivers by our proposed sys-
tem, we need to give a specification and a data sheet of
devices to the system. In respect of devices written and

b

behaviour
print_init[init,select,put_handler]
>> (writel[data,strobe,nstrobe,
select,retry,paper_emptyl
[1 error[data,strobe,nstrobe,
select,retry,paper_emptyl)
where
process print_init
[init,select,put_handler]: exit :=
init;
select;
put_handler;
exit
endproc
process write[data,strobe,nstrobe,
select,retry,paper_emptyl]:
noexit :=
data;
strobe;
nstrobe;
(write[data,strobe,nstrobe,
select,retry,paper_empty]
[1 error[data,strobe,nstrobe,
select,retry,paper_emptyl)
endproc
process error[data,strobe,nstrobe,
select,retry,paper_emptyl
noexit :=
([busy]
-> retry
[1 [not(online) and nopaper]
-> paper_empty
[1 [not(online)]
-> select);
(write[data,strobe,nstrobe,
select,retry,paper_empty]
[1 error[data,strobe,nstrobe,
select,retry,paper_empty])
endproc
endspec

Figure 6: A sample specification of a printer device

written in LOTOS

designed with HDL(Hardware Description Language)
such as Verilog-HDL[13], it may be possible to generate
inputs of the proposed system from the specification it-
self written in HDL. In future, we adopt such devices
to the system, and construct the system to generate
device drivers automatically from its description.

3.5 Related Work

We research the possibility of generating OS automat-
ically. In this paper, we propose an automatic device
driver generation system, and its inputs are discussed.
Few studies on generation of OS itself or parts in OS
have been reported.

Jia and Maekawa claim that it is significant to con-
struct kernel of OS automatically and that the con-
struction method urgently is needed[l]. They, how-
ever, do not show any approach or design to realize
the method.

Chou et al. have proposed the hardware/software
co-synthesis system to automatically synthesize device
driver routines as a step in the design of embedded

controllers[2]. They have exploited algorithms from
graph theory to partition and schedule interface events
in a viewpoint of hardware/software co-design.

4 Conclusion

In this paper, we aim at lightening the burden in writ-
ing device drivers and improving their productivity by
using a formal specification language. We have pro-
posed an automatic device driver generation system.
We divide a specification and a data sheet from a de-
vice driver whether or not it depends on a chip. The
system generates a source code of a device driver by
giving both of a specification and a data sheet of a de-
vice. A printer device is chosen as an example. We
examine existing printer device drivers and investigate
the abstraction of the drivers to extract peculiar values
and fundamental functions of the driver from them. In
addition, we write the specification of a printer device
driver in VDM-SL, which is one of formal specifica-
tion languages. By using a formal specification lan-
guage, we can remove obscurity from a specification of
software in comparison with other programming lan-
guages, and then bugs can be reduced in the specifica-
tion as many as possible. As a result,

e a rough process in a device driver for the target
device can be generated automatically,

e the specification of devices, which is input of the
system, is not needed to rewrite when we adapt a
new device of which functions are equal to those
of the old one, and

e because of the above, the burden which we need
in writing device drivers can decrease, and their
productivity is improved.

Future issues are as follows:

e Enhancement of the system.

We cannot generate a complete device driver au-
tomatically because we do not treat with inter-
rupts or timing control in this paper. We must
enhance the system to be able to generate auto-
matically device drivers completely. According
to circumstances, we may develop a more adapt-
able language for writing device drivers.

e Improvement of adaptability to the system.

In this paper, a printer device is chosen as an
example because it is smaller and simpler than
other devices. We need to adapt them to the
system referring to existing device drivers in or-
der to show usefulness of the system. We plan
to adapt network adapters of which many kinds
exist.

o Adoption of standard interface ;O (Intelligent
Input Output)[11][12].

I,0 SIG has determined standard interface I,O
between OS and devices. Under the specification
of 1,0, OS can communicate the device with the
same device driver even if OS changes. It, how-
ever, includes lower performance than usual. We
must consider whether or not we use it in our
proposed system.

o Generation of device drivers for devices written
in HDL (Hardware Description Language).

We need to give a specification and a data sheet
of devices to the system. In future, we adopt
devices written in HDL such as Verilog-HDL[13],
and construct the system to generate device drivers
automatically from its description.

References

[1] X. Jia and M. Maekawa: “Operating System Kernel
Automatic Construction,” Operating Systems Review,
Vol.29, No.3, pp.91-96, 1995.

[2] P.H. Chou, R.B. Ortega, G. Borriello: “The Chi-
nook Hardware/Software Co-synthesis System,” Proc.
8th Int’l Symp. on System Synthesis, pp.22-27, 1995.

[3] S. Ritz, M. Pankert, J. Waltenberger, V. Zivojnovik,
and H. Meyr: “Code Generation Techniques in the Block
Diagram Oriented Design Tool COSSAP/DESCARTES,
” Proc. 5th Int’l Conf. on Signal Processing Applications
and Technology, Vol.1, pp.709-714, 1994.

[4] E. Tuggle: “Introduction to Device Driver Design,”
Proc. 5th Annual Embedded Sys. Conf., Vol.2, pp.455-
468, 1993.

[5] T.Katayama, K. Saisho and A. Fukuda: “A Method for
Automatic Generation of Device Drivers with a Formal
Specification Language,” Proc. Int’l Works. on Princi-
ples of Softw. Evolution (IWPSE98), pp.183-187, 1998.

[6] A.S. Tanenbaum: “Operating System - Design and Im-
plementation,” Prentice Hall, 1987.

[7] FreeBSD Inc.: http://www.freebsd.org/
[8] NetBSD Project: http://www.netbsd.org/

[9] C.B. Jones: “Systematic Software Development using

VDM,” Prentice Hall, 1990.

[10] T. Bolognesi and E. Brinksma: “Introduction to
the ISO Specification Language LOTOS,” Comp. Netw.
ISDN Sys., Vol.14, No.1, pp.25-59, 1987.

[11] L, O SIG: http://www.i20sig.org/

[12] D. Wilner: “I20’s OS Evolves,” BYTE, Int. Ed.,
MecGraw-Hill, Vol.23, No.4, pp.47-48, 1998.

[13] D.E. Thomas and P.R. Moorby: “The Verilog Hard-
ware Description Language (Z“d ed.),” Kluwer Academic
Publishers, 1995.

