Proposal of a Support System for Device Driver Generation

Tetsuro Katayama, Keizo Saisho, and Akira Fukuda
Graduate School of Information Science,
Nara Institute of Science and Technology

8916-5 Takayama Ikoma, Nara 630-0101, JAPAN.
{kat,sai,fukuda}@is.aist-nara.ac.jp

Abstract

Writing device drivers is one of the most difficult tasks
to develop or port operating systems (0Ss). A device
driver need to be described according to the target de-
vice and OS. And, in the description, programmers must
know information about hardware such as specifications
of devices and carefully describe compler parts such as
timing control. This paper proposes a support system for
device driver gemeration. The inputs for the system are
device driver specification which shows operations of the
device, OS dependent specification which shows depen-
dent parts on the OS, and device dependent specification
which shows dependent parts on the device. As an exam-
ple, network devices ts adopted. The inputs to generate
device drivers by the proposed system are described.

keywords: operating systems, device drivers, network,
ethernet, automatic generation.

1 Introduction

Writing device drivers is one of the most difficult tasks
to develop or port operating systems (OSs). Some of the
reasons are as follows:

e Programmers of device driver must know informa-
tion about hardware such as specifications of devices
and carefully describe complex parts such as timing
control.

e When two devices have different chips (controllers)
even if they offer the same services, the programmers
must write two different device drivers for each of
them.

¢ If we change an OS but use the same devices, we
need to have the device drivers for new one.

As internet is grown and multi-media is progressed,
various devices would be developed. It is a more serious
problem to spend much time and make efforts to write
the device drivers. We should urgently cope with reduc-
ing the burden. Few studies on generating device drivers
or OSs themselves have been reported[1]-[3]. We have
proposed the device driver generation system before[4].

The system, however, may not reduce the burden in writ-
ing device drivers because the abstraction of them are not
always effective.

In this paper, we aim at lightening the burden. We
propose a support system for device driver generation
afresh and describe the inputs for the system. We choose
FreeBSD[6] as the target OS and network devices as the
target device.

2 Support System for Device Driver
Generation

It is considered that inputs for the system are various
elements such as functions, values, timing control, and so
on. We attempt to simplify inputs for the system. The
inputs for the system are determined as follows:

e device driver specification
It shows operations of the device. It is described that
functions, data structure, and code in the functions
which the generated device driver uses.

e OS dependent specification
It shows dependent parts on the OS. It is de-
scribed that names, arguments, return values of de-
vice driver interfaces which the OS provides.

e device dependent specification
It shows dependent parts on the device. It is de-
scribed that dependent parts on the hardware in the
functions of the device described in the device driver
specification

Figure 1 shows an outline of the system. In the usual
method, we need to describe a code corresponding to each
OS and device. In the proposed system, when we change
a device to a new one which offers the same services, we
have to rewrite only the part depended on a chip of the
new one. That is, the OS dependent specification can
be reused. Similarly, when we change an OS, the device
dependent specification can be reused.

each kind of devices each OS each device
device driver OS dependent device
specification specification dePe.r!de’?t
specification
—

Support System for Device Driver Generation |

Source code of
a device driver

Figure 1. Outline of support system for device
driver generation

Table 1. Device driver interfaces of the network
device on FreeBSD.

function name | operation

probe detection of devices

attach registration of devices into OS

output construction of ethernet flames from packets
start processing to send ethernet flames

init initialization of devices

ioctl controls of devices

watchdog timer

poll_recv receiving processing with polling
poll_xmit sending processing with polling
poll_intren interrupting processing with polling
poll_slowinput | receiving processing against slow devices
done finish of sending processing

3 Inputs of the System

As an example of the generation, we choose FreeBSD
2.2-stable (referred to as FreeBSD)[6] and network de-
vices. The network devices are representative ethernet
cards of PCI (Peripheral Component Interface) such as
DE500A (DEC Co.), Etherlink XL (3Com Co.), and
EtherPower II (SMC Inc.).

OSs operate devices through device driver interfaces.
Devices is abstracted by the interfaces. Table 1 shows
the device driver interfaces of the network devices on
FreeBSD. We adopt 12 operations in Table 1 into the
proposed system as the interfaces of the network devices.

To generate device drivers, the operations which the
target device uses among 12 operations must be gener-
ated. Hence, we make inputs for the system to generate
the operations. In this paper, we choose the start func-
tion, which is one of the operations, as an example and
describe the inputs to generate the start function.

The start function sends data-link flames outputted
from the output function to network through the inter-
faces. That is, it is considered that the start function
sends ethernet flames to network.

/* Start function */

/* Buffer operation */
buf_op(ifp);

/* Command */
command(ifp);

}

Figure 2. Example of device driver specification
for start function.

3.1 Device Driver Specification

In device driver specification, operations of the start
function, which are inputs, outputs, and minute opera-
tions of the function, are described.

As the inputs, ethernet flames are given to the start
function. We need to determine a data structure to store
the ethernet flames. We determine mbuf structure, which
is adopted in FreeBSD, as the data structure. The input
and output of the start function are as follows:

e input — structure of mbuf

e output — data sent to network

The operations of the start function are as follows:

1. Buffer Operation — storing the data to a buffer
2. Command — Sending the data

The operations are described as a form of functions
in C language[5]. Figure 2 shows an example of device
driver specification.

3.2 OS Dependent Specification

In OS dependent specification, the device driver inter-
faces which the OS requires are described as follows:

e argument — ifnet structure (including mbuf struc-
ture)

e return value — static void

e name — <device_name>_start

The description of the interfaces are the same as pro-
totype declaration in C language. The name of the inter-
faces is written in %<NAME>. It is given as an argu-
ment when the system starts. Figure 3 shows an example
of OS dependent specification for FreeBSD.

3.3 Device Dependent Specification

In device dependent specification, the followings are
needed.

static void %<NAME>(struct ifnet * const ifp)

Figure 3. Example of OS dependent specifica-
tion for FreeBSD.

status(32bit)
control(10bit) | data length2(11bit) | data length1(11bit)
data address1(32bit)
data address2(32bit)

Figure 4. Descriptor of DE500A (device depen-
dent specification)

1. Buffer Operation — This operation is that the data
to a buffer sent to ethernet controller are stored. The
operation needs specifications as follows:

o Structure of the descriptor (where descriptors
construct a buffer and buffer consists of multi-
ple descriptors)

— status — status of descriptor

— control — controls of descriptor

— next descriptor address — physical address
of the next descriptor when descriptor is con-
structed by lists.

— data address — physical address of the eth-
ernet flame sent to ethernet

— data length — length of the flame sent to eth-
ernet

— length — length of the flame sent to ethernet
excepting a header part

e Length of the buffer

e Symbol of start and end of the buffer

2. Command — This operation is that the data stored
to a buffer send to network. The operation needs
specifications as follows:

¢ timing of issuing commands
¢ value of commands

e command registers

e combination of commands

Figure 4 shows the descriptor of DES00A. Table 2
shows the data needed in constructing buffer. Table 3
shows transaction of transmitting on the ethernet con-
trollers where write(w,z) is writing value z in port w,
read(y) is reading a value from port y, and wait(z) is
waiting z times.

The description of the device dependent specification
is almost the same as one in C language. It is described
with the form “operation name:\{ contents of the oper-
ation \}”. In the start function, ‘Buffer Operation’ and
‘Command’ correspond to the operation name. Figure 5
shows a part of an example of device dependent specifi-
cation for DES00A.

Table 2. Input data for buffer construction
on the ethernet controllers (device dependent

specification)

DES00A EtherPowerl | Etherlink XL
0x80000000
status 0x80000000 0x8000 the last descriptor
total length sent by
one descriptor
& 0x80000000
datamore than half
0x000c remainsin \gelbiffa
control the first descriptor X
eles denpor | X
0x0300 0x10
data per adescriptor per adescriptor per adescriptor
address 32bit x2 32bit x1 32bit x63
32bit
Jaa 11bit 16bit the last descriptor
ot 0x80000000
ethernet
frame
length X X O
next O
dzi;:'ggr >< O the last descriptor
0
I%::;; 128 16 16

Table 3. Transaction of transmitting on the eth-
ernet controllers (device dependent specifica-

tion)

DES500A

EtherPowerll

Etherlink XL

write (ioport +4.,1) | write (ioport,0x04)

write (ioport + Ox1c,

write (ioport + 0xOe,0x3002)

for(i=0; i< 1000 ;i++){
wait(10ms);
if(! read (ioport + OXOE) & 0x1000)
break;

0x00000001)
}
if(read (ioport + 0x24)){

appending lists of the new data
to the current lst of the buffer

in the new data,

status & = ~0x80000000

write (ioport + 0x24,
the top address of the new buffer)
}
write (ioport + OxOe,
write (ioport + OxOe,

0x3001)
0x0807)

4 Discussion and Evaluation

Referring to three specifications as mentioned above
and combining them, the start function is generated. In
this paper, we choose FreeBSD as the target OS and three
network devices as the target device. The device drivers
can be generated for the each device without changing
the OS dependent specification for FreeBSD.

We compare our proposed system with the usual
method. Table 4 shows the number of lines of the de-
scribed source code. The number of the lines can be
reduced in proposed system, because macro statements
such as #ifdef are not needed to describe, namely, the
specifications for the inputs are fixed.

Table 5 shows the number of lines of the generated
source code. The number of the lines can be reduced in
proposed system, because redundant parts such as com-
ment statements and ones for debugging are not gener-
ated.

A significant performance degradation of the gener-

Buffer operation:\{
tulip_softc_t * const sc = TULIP_IFP_TO_SOFTC(ifp);

while (sc—>tulip_if.if snd.ifq_head != NULL){
struct mbuf *m;

/* Get next packet to send */
(m) = (&(sc—>tulip_if.if snd))—>ifq_head;
if (m) {
if (((&(sc—>tulip_if.if snd))—>ifq_head
= (m)—>m_nextpkt) == 0)
(&(sc—>tulip_if.if snd))—>ifq_tail = 0;
(m)—>m_nextpkt = 0;
(&(sc—>tulip_if.if snd))—>ifq len——;

\}

Command:\ {
tulip_softc_t * const sc = TULIP_IFP_TO_SOFTC(ifp);
out32(sc—>iobase + 4, 1);
out32(sc— >iobase + 0x1lc, 0x00000001);

\}

Figure 5. A part of an example of device depen-
dent specification for DE500A.

Table 4. Amount of the described source
code(lines)

usual method | proposed system
DE500A 202 114
EtherPower 11 99 92
Etherlink XL 212 187

ated code does not occur in comparison with one by the
usual method. The mainly cause is that we use mbuf
structure itself with used FreeBSD. When the system is
applied to other OSs and they use another structure to
send data, the structure must be transformed into mbuf
structure. For example, in Linux][7], skbuff structure will
be transformed. In such the case, this transformation
may become overhead. This problem is a future issue.

I,O(Intelligent Input Output) SIG[8] has determined
standard interface 1,0 between OSs and devices. Un-
der the specification of I;0, a device driver is divided
into three classes such as OSM(OS Specific Module),
HDM (Hardware Device Module), and Messenger send-
ing or receiving packets between OSM and HDM. An OS
can communicate the device with the same HDM even if
the OS changes[9].

It, however, includes lower performance than usual.
Especially, in rapid devices or real time system such the
case will be a fatal problem. In our proposed system such
the overhead in communication will not occur because
device drivers are abstracted in the generation.

5 Conclusion

In this paper, we aim at lightening the burden in writ-
ing device drivers. We proposed a support system for

Table 5. Amount of the generated source
code(lines)

usual method | proposed system
DES500A 202 101
EtherPower II 99 57
Etherlink XL 212 131

device driver generation and describe the inputs of the
system. We chose FreeBSD and the drivers of network
devices as an example. The system generates a source
code of a device driver by giving three specifications such
as device driver specification, OS dependent specifica-
tion, and device dependent specification. We adapted the
start function to the proposed system as an example. As
a result, The each specification is not needed to rewrite
when we describe it once, namely, it can be reused, and
the burden in writing device drivers can decrease, and
their productivity is improved.

Future issues are as follows:

e Improvement of adaptability to the system.
In this paper, we choose FreeBSD as the target OS
and network devices as the target device. We need
to adapt other OSs or devices to the system and
evaluate it.

o Generation of drivers for devices written in HDL
(Hardware Description Language).
We need to describe three inputs for the system to
generate a device driver. In future, we adopt de-
vices written in HDL. We will construct the system
to generate device drivers automatically from its de-
scription.

References

[1] X. Jia and M. Mackawa: “Operating System Kernel Au-
tomatic Construction,” Operating Systems Review, Vol.29,
No.3, pp.91-96, 1995.

[2] E. Tuggle: “Introduction to Device Driver Design,” Proc. 5th
Annual Embedded Sys. Conf., Vol.2, pp.455-468, 1993.

[3] B. Maaref: “MMS Implementation Based on a Real-time Op-
erating System Kernel,” Proc. IEEE Int’l Symp. on Indus-
trial Electronics (ISIE’97), pp. 29-34, 1997.

[4] T. Katayama, K. Saisho, and A. Fukuda: “A Method for
Automatic Generation of Device Drivers with a Formal Spec-
ification Language,” Proc. Int’l Workshop on Principles of
Software Evolution (IWPSEY8), pp.183-187 (1998).

[5] K. Yamashita, T. Katayama, K. Saisho, and A. Fukuda:
“Definition of an Input Form for a Device Driver Generat-
ing System,” IPS Japan Sig Notes, Vol.98, No.71, pp.61-68
(1998) (in Japanese).

6] FreeBSD Inc: http://www.freebsd.org/

)

Linux Online: http://www.linux.org/
1,0 SIG: http://www.i20sig.org/

D. Wilner: “I2sO’s OS evolves,” BYTE, Int. Fd., McGraw-
Hill, Vol.23, No.4, pp.47-48, 1998.

,—E,——‘

i)

