Test-case Generation for Concurrent Programs with the Testing

Criteria Using Interaction Sequences

Tetsuro Katayama
Graduate School of
Information Science,

Nara Institute of
Science and Technology.
8916-5 Takayama Tkoma,

Nara 630-0101, Japan.

kat@is.aist-nara.ac.jp

Eisuke Itoh

Computer Center,
Kyushu University.

6-10-1 Hakozaki,
Fukuoka 812-8581, Japan.
itou@cc.kyushu-u.ac.jp

Zengo Furukawa
Faculty of Engineering,
Kagawa University.

1-1 Saiwai Takamatsu,
Kagawa 760-8526, Japan.

zengo®@eng.kagawa-u.ac.jp

Kazuo Ushijima
Graduate School of Information Science
and Electrical Engineering, Kyushu University.

6-10-1 Hakozaki, Fukuoka 812-8581, Japan.

ushijima@csce.kyushu-u.ac.jp

Abstract

Test-cases play an itmportant roll for high quality of
software testing. Inadequate test-cases may cause bugs
remaining after testing. QOverlapped test-cases lead to
the increases in testing costs. This paper proposes a
test-case generation method with the EIAG(Event In-
terActions Graph) and the ISTC (Interaction Sequences
Testing Criteria). The EIAG represents behavior of
concurrent programs. It consists of Event Graphs and
Interactions. An Event Graph is a control flow graph of
a program unit in a concurrent program. The Interac-
tions represent interactions (synchronizations, commu-
nications and waits) between the program units. The
ISTC are proposed which are based on sequences of
Interactions. The cooperated paths (copaths) on the
EIAG as test-cases satisfying the ISTC are generated.
The generated copaths can detect dead (unreachable)
statements which concern interactions, and they can
find some communication errors and deadlocks in test-
ing. It is, however, necessary to validate feastbility of
the generated copaths.

Keywords: software testing, concurrent programs,
structural testing, test-cases,
Graph(EIAG), testing criteria, Interactions Sequences
Testing Criteria(ISTC).

Event InterActions

1 Introduction

A process of generating test-cases should be system-
ized. Software testing is expensive; it accounts for ap-
proximately half of a software system development[7].
One of the problems involved in software testing is the
process of generating test-cases. Test-cases play an im-
portant role in determining the quality of software. If
the number of test-cases is not adequate, it is likely that
bugs would appear in usage of programs after testing.
If the test-cases overlap, testing costs increase.

Concurrent programs are frequently written and
used in recent years[8]. It is necessary to improve their
reliability. For sequential programs we have practical
methods of generating test-cases, based on the source
code or specification of a program. It is obvious that
only using the methods for sequential programs is in-
adequate for evaluating reliability of concurrent pro-
grams. Testing criteria proposed for sequential pro-
grams do not care the two characteristics of concur-
rent programs. One is nondeterministic execution and
the other is interactions (synchronizations, communi-
cations and waits) between processes (tasks).

We proposed a test-case generation method for con-
current programs before[3][6]. This method, however,
does not always obtain sufficient results in testing for
concurrent programs because of our adopted tesitng
criteria. A testing criterion specifies conditions for ter-

mination of testing. In testing of concurrent programs,
we have to specify not only input data but also se-
quences of statements for execution as testing condi-
tions of the concurrent programs.

The testing criteria OSC (Ordered Sequence Test-
ing Criteria) are proposed for concurrent programs in
[2], which are based on sequences of concurrency state-
ments. An OSCj requires execution of all sequences
of length k of the statements at least once (k is a
natural number). We propose new testing criteria
ISTC(Interaction Sequences Testing Criteria) using a
concept of the OSC.

This paper describes a test-case generation method
for concurrent programs with the ISTC as new test-
ing criteria. In section 2, firstly we introduce the
Event InterActions Graph (EIAG) as a model describ-
ing behavior of a concurrent program, and cooperated
paths (copaths) as test-cases on the EIAG[3], and then
our adopted testing criteria for concurrent programs in
[3][6] are described. In section 3, we express the OSC
for concurrent programs and show test-case generation
with the EIAG and the ISTC. In section 4 we discuss
and evaluate our proposed method.

2 A Model for Concurrent Programs

In this section, we introduce an Event InterActions
Graph (EIAG) as a model describing behavior of a con-
current program, and cooperated paths (copaths) as
test-cases on the EIAG[3]. Furthermore, we describe

our adopted testing criteria for concurrent programs in

[3][6].
2.1 EIAG (Event InterActions Graph)

The EIAG consists of Event Graphs and Interactions
between processes (tasks).

2.1.1 Event Graphs in the EIAG

The concurrent programs that we are interested in test-
ing include those written in languages such as Ada,
CSP, and C concurrent programs on UNIX system.
A concurrent program consists of some program units
(processes or tasks) which communicate with each
other. An Event Graph(EG) represents abstract con-
trol flows of a process (task) or a program unit in a con-
current program. A control flow graph can be deduced
from source code because each process or program unit
is regarded as being sequential. Nodes in the Event
Graph denote concurrent event statements and flow-
control statements which include the concurrent event

statements. Concurrent event statements character-
ize concurrent behavior in a concurrent program. For
example, in an Ada concurrent program, concurrent
event statements are such statements as entry calls,
accept statements and generation statements of a new
task-instance of a task-type. Edges in the Event Graph
express transfer of control between nodes.

EG=(N,E,s,f),

where N is a set of nodesin FG, and E is a set of edges
in EG. If e = (u,v) € E, then u,v € N. s is the start
node and f is the final node.

A concurrent program has multiple program units; it
has multiple Event Graphs. We express a set of Event
Graphs corresponding to a concurrent program P as
EGs.

EGs(P) = {EG; = (N;, Ei, s, fi)|1 <1 < numProc(P)},

where numProc(P) denotes the number of processes

in P.

2.1.2 Interactions in the EIAG

When two processes T4 and T'g synchronize with each
other, let Event Graphs FG 4 and EGp represent pro-
cesses T4 and T'g, respectively. The Event Graph FG 4
has a node set N4 and the FGpg has a node set Npg.
We define a set Sync, which satisfies the following ex-
pression, consisting of pairs of elements in each node
set. A triplet (a,b, X) in the Sync represents a simul-
taneous execution with an identifier X in a concurrent
program.

Sync(EG 4, EGp) =
{sync = (a,b,X)|a € Na,b € Ng},

where (a, b, X) represents simultaneous execution of a
and b with an identifier X.
Similarly, we define two sets Comm and Wazt:

Comm(EG4, EGg) =
{comm = (a,b,Y)|a € N4,b € Ng},

where (a,b,Y’) represents communication from a to b
with an identifier Y.

Wait(EG4, EGg) =
{wait = (a,b, Z)|a € Na,b € Ng},

where (a,b, Z) represents that there is possibility of
node a waiting b with an identifier Z. Wait has two
states for waiting and for not waiting.

We let Syncs denote a set of all triplets of simulta-
neous executions in a concurrent program.

Syncs(EGs) = {(a,b, X)|34,3B
[(a,b,X) € Sync(A,B) A A, B € EGs]}.

Similarly, we describe Comms and Wazts:

Comms(EGs) = {(a,b,Y)|34,3B
[(a,b,Y) € Comm(A,B)AA,B € EGsl},

Waits(EGs) = {(a,b, Z)|3A,3B
[(a,b, Z) € Wait(A, B) A A, B € EGs]}.

Synchronization between two statements means that
one statement necessarily waits the other statement.

The Event InterActions Graph (EIAG) consists of
Event graphs and Interactions. The EIAG represents
behavior of a concurrent program. That is:

Interactions(P) =
{Syncs(EGs), Comms(EGs), Waits(EGs)},

EIAG(P) =< EGs(P), Interactions(P) > .

Table 1. A part of a program to solve the
producer_consumer problem and correspon-
dence of the program to nodes in the EIAG.

=]
o]
o
¢

task statements of the program

begin
loop
buffer.put(x);
exit when x = ascii.eot;
end loop;
end;
begin
loop
buffer.get(y);
exit when y = ascii.eot;
end loop;
end;
begin
loop
select
accept put(z: in character) do
buffer 10 accept get(z: out character) do
15 terminate;
16 end select;
17 end loop;
—1 end;

producer

consumer

BN R OFROUERNRFE OO WO

Table 1 shows a part of a program to solve the pro-
ducer_consumer problem written in Ada programming
language. This program consists of three tasks: the
task producer, the task consumer and the task buffer.
The task producer generates one character and puts it
in the buffer. The task consumer gets one character
from the buffer and extinguishes it. The task buffer
controls elements in the buffer.

Figure 1 shows the EIAG of the program. Table 1
shows correspondence of the program to nodes in the
EIAG. Node numbers are not continuous because in the
steps constructing Event Graphs we give a node num-
ber to each of the statements of the program and then
remove the nodes which do not relate to the concurrent
event statement. In Figure 1, the circles denote the
nodes, the solid arrows denote the edges, the dashed
arrows denote communications, which are elements of
Comms', and node 0’s and node —1’s are start and
final nodes, respectively.

2.2 Test-cases for Concurrent Programs

In order to generate test-cases from an EIAG, we
firstly consider test-cases on an Event Graph.

2.2.1 Test-Cases on the Event Graph

We define test-cases as Paths on an Event Graph in
a similar manner for sequential programs. Firstly, we
define Subpaths on an Event Graph as follows:

Subpaths is a set of sequences of the nodes on £FG =
(N, E,s, f), and all pairs of side by side nodes in the
sequences are elements of the edge set E:

Subpaths(EG) = {a|a € Seq(N) A Arc(a, EG)},

Arc(a, EG) =Vi[l <i < |o| =< afi),a(i + 1) >€ E],

where Seq(N) represents the sequence of nodes, || is
length of the sequence «, and «() is the i-th element
of the sequence a.

Paths is a subset of Subpaths’ elements whose first
node is the start node s and last node is the final node

f:

Paths(EG) =
{a|a € Subpaths(EG) A a(l) = s Aa(|la]) = f}.

An element of Subpaths is called a subpath and an
element of Paths is called a path.

2.2.2 Test-Cases on the EIAG

By using test-cases on Event Graphs and being based
on the Interactions, we generate test-cases on the
EIAG. Firstly, we define Copath (cooperated path) be-
tween two Event Graphs.

Suppose that A, B € EGs and that o and 3 are
the elements of Paths(A) and Paths(B) respectively.
Copath is a set of pairs (a, (), and if (a,b,X) is an

1These nodes are elements of Syncs also. In order to simplify
graph we omit those elements.

buffer

producer (©
® ®
o o
O-+Q OF—-
® @

© ® &

consumer

Figure 1. The EIAG of the program to solve
the producer_consumer problem.

element of Sync(A, B), the paths have property that
the number of a’s is equal to the number of b’s, where
a is an element of « and b is an element of 3:

Copath(A, B) =
{(a, B)| a € Path(A) A B3 € Path(B)
ASuc((a, B), Interactions),

Sue((a, B), Interactions) =
Y(a,b, X) [(a,b, X) € Interactions —

[Z Num(a,a) = Z Num(B,b)]],

where Num(a, a) represents the number of a’s in the
sequence «.

In a concurrent program, we define Copaths be-
tween any two Event Graphs if there are more than
two Event Graphs as follows. If a concurrent program
has m processes, Copaths consists of a set of m paths.

Copaths(EGs) = {(o1, a2, , a|pgs|)
Vi i [[L<ij < |EGs|,i # 4] —
[(as,) € Copath(EG;, EGj)
NEG;, EG; € EGs]}.
We can define that elements of Copaths denote test-
cases on an EIAG. That is:
TestCases(EIAG) = Copaths(EGs)

An element of Copaths is called a copath. Figure 2
shows a sample copath of Figure 1’s EIAG.

2.3 Testing Criteria

Testing criteria specify not only termination con-
ditions of test-cases generation but also reliability

producer

consumer

Figure 2. A sample copath.

of testing[l]. Many testing criteria have been pro-
posed for sequential program testing, but a few test-
ing criteria have been proposed for concurrent program
testing[9][10]. We adopted simple testing criteria for
test-cases generation of concurrent programs as below,
because of easy implementation and a practical method
in [3][6].

1. Edge Coverage Criterion — All edges in a model
are executed at least once in testing.

2. Loop Coverage Criterion — If a program has iter-
ation, we consider two cases of zero and one repe-
titions in testing.

3. Interaction Coverage Criterion — All interactions
of a concurrent program are executed at least once
in testing.

We have developed the test-case generation
tool(T'Cgen)[6]. It generates copaths satisfied our
adopted testing criteria as mentioned above from the

source code of a concurrent program written in Ada
programming language automatically.

A concurrent program can be supplied with the same
input data set on two different executions, yet exhibit
different behavior. It is called the nondeterministic ex-
ecution. This behavior represents the effects of the
computer system making different choices in response
to conditions external to the program, such as the load
on the machine on which the program runs.

For example, a concurrent program is shown in Fig-
ure 3. It consists of 3 processes: P1, P2, and P3. P1
and P2 send a string to P3 once. P3 receives both
strings and sets both strings in the same data cell “m”.
The execution result is unpredictable which string is
set.

P1 P2
1: Send_data(aa); 2: Send_data(bb);

P3
3: repeat
4: m:= Received_data;
5: until nodata;

p3

pl a p2
O ’G ©
mea (») = b
S ©, e
C

m="aa" or " bbn

Figure 3. An example concurrent program.
On the program, the Interactions are the following:

(1,4,m),(2,4,m) € Comms,

” is in accordance

The execution result value of “m
with the execution order of the elements in Comms.

The possible execution orders are as follows:

Seql :
Seq?2 :

< (1,4,7’71),(2,4,7’7’1,) >; — m = “bb”,
<(2,4,m),(1,4,m) >, — m = “aa”.

If the program is executed once; either Seql or Seq2
is executed, then the all-paths testing criterion (Cy)
[1] is covered and our adopted three testing criteria as
mentioned above are satisfied. But it is not sufficient.

It should be executed in a different execution sequence.
We must reconsider the Interaction Coverage Criterion.

3 ISTC(Interaction Sequences Testing
Criteria) and Copath

3.1 ISTC

The nondeterministic execution of concurrent pro-
gram can be modeled as ordered sequences of Inter-
actions in the program. In testing of concurrent pro-
grams, we have to specify not only input data but also
the ordered sequences for execution as testing condi-
tions of concurrent programs. However, it is not practi-
cal to execute all possible execution orders of the state-
ments in testing. A nondeterministic execution of a
concurrent program can be abstracted as an execution
order of concurrent event statements.

The OSC (Ordered Sequence Testing Criteria) are
proposed[2]. The OSC are concerned with the execu-
tion order of concurrency statements. In [2], the formal
definition of OSC is as follows:

0OSCy, :

Suppose that there is a concurrent program
and S is a set of all concurrency statements in
the source code. Construct ordered sequences
of length k of the concurrency statements,
where k is a natural number. An OSCj re-
quires execution of all the ordered sequences
of length k at least once.

A set of test-events of OSCy (k > 1) is de-
scribed as the following set,

TE(0SCy)
={< 51,82, -sp > |s: € 5,1<i<k},

where the TE(C71) is a set of test-events of a
testing criterion Cri.

If £ = 2, the OSC; is called the ordered pair
testing criterion. A set of test-events of OSC,
is described as the following set.

TE(0SC;) = {< si,5; > |s;,s; € S}.

If all test-events of OSC, are executed, then
all communications between any two pro-
cesses are tested at least once.

A concept of the OSC is applied the EIAG; we pro-
pose new testing criteria ISTC(Interaction Sequences

Testing Criteria) which are based on sequences of In-
teractions.

TE(ISTCy) = {w|w € Seq(Interactions) A |w| = k}

When k = 1, the ISTC; is equivalent to the Interac-
tion Coverage Criterion.
If £ = 2, the following are gotten.

TE(ISTC,) =
{< (a,b,X),(c,d,Y) >
[V(a,b, X), (¢,d,Y) € Interactions}.

By adopting ISTC, as a testing criterion instead
of the Interaction Coverage Criterion, both Seql and
Seq2 on the example in the Figure 3 must be executed.

3.2 Algorithms of copath generation

In this section, we describe two algorithms. One is
the path generation algorithm for the Event Graphs,
and the other is the copath generation algorithm.

The path
generation algorithm can generate paths on an Event
Graph. It is not needed to modify because it is sat-
1sfying not the Interaction Coverage Criterion but the

Both algorithms are proposed in [3].

other criteria.

§Path Generation Algorithm

Stepl. Find one path from the start node to
the final node by the depth-first search.

Step2. Find a subpath of which the first
node (named fork node) and the last
node (named join node) are on already
found paths. If we cannot find such a
subpath, this algorithm stops.

Step3. Replace the subpath from the fork
node to join node on the paths with the
subpath found in Step2. Hence, we get
another path.

Step4. Go to Step2.

This algorithm gets the first path and exchangeable
subpaths by scanning edges once, and scans edge once
more in order to search fork nodes and join nodes.
Therefore, the order of the algorithm is O(|E|+ |E|) =
O(|E|). We consider the worst condition: |E| = |N|%.
That is, the order of the algorithm is O(|N|?).

The copath generation algorithm can generate co-
paths for a concurrent program which has two Event
Graphs A, B. It should be modified because it is satis-
fying the Interaction Coverage Criterion. We construct
a new algorithm with ISTCy.

§Copath Generation Algorithm
Stepl. Select a path « from a set Path(A).

Step2. If £ > 2 and two subpaths on the
path « can be exchanged, the exchanged
path is generated as a new path in ad-
vance.

Step3. Count the sum of the number of
nodes corresponding to concurrent event
statements in the path a. If the sum is
equal to or more than k, go to Step4.
Otherwise, make a new path o’ by com-
bining subpaths with the path « or re-
placing a subpath with a part of the path
a so that the sum can be equal to k.
Here, count each a in the path o and
one component of an element (a, b, X) of
Interactions(A, B).

Step4. Find a path 8 from a set Path(B),
where the number of nodes identified by
b in the path 3 are equal to the number
counted each a. If we cannot find such a
path 3, go to step6. Otherwise, the pair
of the path a(a’) and § is a copath.

Step5. Go to Step8.

Step6. Make a new path 3’ by combining
subpaths with the path 3 or replacing
a subpath with a part of the path § so
that it can satisfy the condition in Step4.
If we cannot make such a new path &',
go to Step8.

Step7. The pair of the path a(a’) and 8’ is
a copath.

Step8. When a new path in which the sum of
number of nodes corresponding to con-
current event statements in the path «
can be equal to k cannot be generated in
the set Path(A), it is replaced with the
set Path(B). If all paths are used, this
algorithm stops. Otherwise, go to Stepl.

The order of the copath generation algorithm is
O(|Path|?) because it corresponds to combination of
paths. We consider the worst condition: O(|Path|) =
O(|E|) = O(|N|?). That is, the order of the algorithm
is O(]N|*). In order to get copaths in case that more
than two Event Graphs exist, this algorithm must be
executed between any two Event graphs. Hence, the
order of the algorithm is O(| N|*™) if a concurrent pro-
gram has m processes.

4 Discussion and Evaluation

In this section, we discuss the reliability of the co-
paths, models for concurrent programs and the feasi-
bility of test-cases on an EIAG.

4.1 Characteristic and Reliability of the
Copath

We qualitatively discuss reliability of concur-
rent programs tested with the generated test-cases.
Howden[1] defined a term reliable as follow. If a pro-
gram satisfies a testing criterion Cr: and all errors in
the program are detected, then Cre is reliable for the
program. The testing criterion which is reliable for
any program is only ezhaustive test[11]. Any practical
testing criterion is only reliable for a program which is
correct or includes some particular errors.

Concerning errors in communication between pro-
cesses, we can roughly characterize two kinds, one is
a complete communication error which causes error
states for all data can be detected in communication,
and the other is a partial communication error where
we may detect errors to some data in communication.

The ISTC are ‘reliable’ for the complete communi-
cation errors in a concurrent program. If a concurrent
program includes the complete communication errors,
testing with test-cases which satisfy the ISTC always
discovers the errors. On the other hand, The crite-
rion is “partially reliable” for the partial communica-
tion error; the errors may be discovered corresponding
to values of test-data.

Other types of errors, such as deadlock and starva-
tion, are not guaranteed to be discovered by the test-
cases satisfying the ISTC. Of course, errors which oc-
cur in a process may be discovered according to the
testing criteria for Event Graphs: unreachable (dead)
concurrent event statements. And some deadlocks can
be found|[5][6].

The larger the value of k£ in ISTCy, is, the more
complex copaths to use in testing is. The number of
test-events of ISTCy is [T E(ISTCy)|*. When &k = 1, the
ISTC; is equivalent to the Interaction Coverage Crite-
rion; it is the same as the method proposed in [3][6].
It is practical but not accurate in cases of concurrent
programs such as Figure 3. If & > 2, the cases can be
solved.

There is a correlation between the number of test-
cases and an accurate description of program behavior.
An accurate description may increase the number of
test-cases. In contrast, decrease in the number of test-
cases may not well reflect program behavior. On the

other hand, Increasing the number of test-cases may
cause the feasibility problem of test-cases may cause
(see Section 4.3). We should determine the value of &
according to characteristics or behavior of the program
and the time to take in testing.

4.2 Models for Concurrent Programs

We used the EIAG as a model of concurrent pro-
grams. The EIAG can express various mechanisms for
COLCUITENCY.

Taylor et al. proposed the concept of structural test-
ing of concurrent programs[10]. They defined the con-
current state graph. The concurrent state graph con-
sists of nodes that denote a combination of states of
each process (task), and edges that denote transfers of
states of each task. They also proposed testing cri-
teria based on the coverage of nodes and/or edges in
the graph. The graph cannot be, however, adapted to
concurrent programs including a task-type which is a
template of task-instances which are dynamically gen-
erated in execution of the programs. The number of
task-instances must be determined before the graph is
constructed. The larger the number of states of each
task, the larger the size of the graph. The graph is not
always realistic as a model for a concurrent program.

The EIAG is fundamentally based on the source
code of a concurrent program. It can cope with con-
current programs including task-types[5][6].

4.3 Feasibility of Test-cases

We described how to automatically generate test-
cases, without interpreting semantics of a program.
Hence, there is no guarantee that the program can be
executed in actual test-cases; the program may not be
executed for some test-cases actually generated based
on the method. In sequential programs this case may
occur.

For example, Figure 4 is a copath for the program
to solve the producer_consumer problem. The copath
must be executed to satisfy the ISTC,. However, if we
execute the program so that this copath can be satis-
fied, the program must execute the get statement in
the task consumer and then execute the put statement
in the task producer. There are no test-data for this
copath. The larger the value of k in ISTCy, is, the more
the number of infeasible paths is. In view of such co-
paths, we will verify the feasibility by forcing execution
of the programl[4].

producer

Figure 4. An infeasible copath.

5 Conclusion

We described a test-case generation method for
concurrent programs with the ISTC (Interactions Se-
quences Testing Criteria) as new testing criteria. We
introduced the EIAG (Event InterActions Graph)
which represents behavior of concurrent programs and
propose the ISTC based on sequences of Interactions.
The cooperated paths (copaths) on the EIAG as test-
cases satisfying the ISTC are generated. We expect that
the number of insufficient or overlapping test-cases will
decrease since copaths generated by the algorithms pre-
sented in this paper are made up systematically. The
generated copaths are reliable for detecting unreach-
able (dead) concurrent event statements, for the com-
plete communication error, and for some deadlocks.
We should determine the value of £ in ISTCy, according
to characteristics or behavior of the program and the
time to take in testing.

Future issues are as follows:

e Solving feasibility of test-cases.

We described how to automatically generate test-
cases, without interpreting semantics of a tested
program. Hence, the program may not be exe-
cuted on some generated test-cases. There may
be no test-data for this test-case. In the future,
we will take measures to confirm the feasibility
by forcing the program to be actually executed.
The forcing execution of the program may solve
the problem nondeterministic execution which is
a characteristic of concurrent programsl[4].

e Expanding T'Cgen.

We have implemented the tool TCgen (Test-
case generator) that automatically generates co-
paths from concurrent programs written in Ada
language[6]. We need to expand the tool TCgen
so that it can automatically generate copaths sat-
isfying the ISTC and that it can generate them
from various concurrent programs.

References

[1] W. E. Howden: “Reliability of the Path Analysis Testing
Strategy,” IEEE Trans. Softw. Eng., Vol.2, No.3, pp.208-215,
1976.

[2] E. Itoh, Z. Furukawa and K. Ushijima: “A Prototype of
a Concurrent Behavior Monitoring Tool for Testing Concur-
rent Programs,” Proc. 1996 Asia-Pacific Softw. Eng. Conf.
(APSEC’96), pp.345-354, 1996.

[3] T. Katayama, Z. Furukawa and K. Ushijima: “Event
Interactions Graph for Test-case Generation of Concur-
rent Programs,” Proc. 1995 Asia-Pacific Softw. Eng. Conf.
(APSEC’95), pp.29-37, 1995.

[4] T. Katayama, Z. Furukawa and K. Ushijima: “A Method
for Structural Testing of Ada Concurrent Programs Using the
Event Interactions Graph,” Proc. 1996 Asia-Pacific Softw.
Eng. Conf. (APSEC’96), pp.355-364, 1996.

[5] T. Katayama, Z. Furukawa and K. Ushijima: “A Test-case
Generation Method for Concurrent Programs Including Task-
types,” Proc. Joint 1997 Asia-Pacific Softw. Eng. Conf. and
Int’l Comp. Sci. Conf. (APSEC’97/ICS5C’97), pp.485-494,
1997.

[6] T. Katayama, Z. Furukawa and K. Ushijima: “Design
and Implementation of Test-case Generation for Concur-
rent Programs,” Proc. 1998 Asia-Pacific Softw. Eng. Conf.
(APSEC’98), pp.262-269, 1998.

[7] G.Myers: “The art of software testing,” John Wiley & Sons,
1979.

[8] C.R. Snow: “Concurrent Programming,” Cambridge Univer-
sity Press, 1992.

[9] K.C. Tai: “On Testing Concurrent Programs,” Proc. Comp-
sac’85, pp.310-317, 1985.

[10] R.N. Taylor, D.L. Levine and C.D. Kelly: “Structural
Testing of Concurrent Programs,” IEEE Trans. Softw. Eng.,
Vol.18, No.3, pp.206-215, 1992.

[11] E. J. Weyuker: “The Complexity of Data Flow Criteria for
Test Data Selection,” Information Processing Letters, Vol.19,
pp.103-109, 1984.

